Stability of linear time-periodic delay-differential equations via Chebyshev polynomials
نویسندگان
چکیده
This paper presents a new technique for studying the stability properties of dynamic systems modeled by delay-differential equations (DDEs) with time-periodic parameters. By employing a shifted Chebyshev polynomial approximation in each time interval with length equal to the delay and parametric excitation period, the dynamic system can be reduced to a set of linear difference equations for the Chebyshev expansion coefficients of the state vector in the previous and current intervals. This defines a linear map which is the ‘infinite-dimensional Floquet transition matrix U ’. Two different formulas for the computation of the approximate U , whose size is determined by the number of polynomials employed, are given. The first one uses the direct integral form of the original system in state space form while the second uses a convolution integral (variation of parameters) formulation. Additionally, a variation on the former method for direct application to second-order systems is also shown. An error analysis is presented which allows the number of polynomials employed in the approximation to be selected in advance for a desired tolerance. An extension of the method to the case where the delay and parametric periods are commensurate is also shown. Stability charts are produced for several examples of time-periodic DDEs, including the delayed Mathieu equation and a model for regenerative chatter in impedance-modulated turning. The results indicate that this method is an effective way to study the stability of time-periodic DDEs. Copyright 2004 John Wiley & Sons, Ltd.
منابع مشابه
Shifted Chebyshev Approach for the Solution of Delay Fredholm and Volterra Integro-Differential Equations via Perturbed Galerkin Method
The main idea proposed in this paper is the perturbed shifted Chebyshev Galerkin method for the solutions of delay Fredholm and Volterra integrodifferential equations. The application of the proposed method is also extended to the solutions of integro-differential difference equations. The method is validated using some selected problems from the literature. In all the problems that are considered...
متن کاملChebyshev Expansion of Linear and Piecewise Linear Dynamic Systems With Time Delay and Periodic Coefficients Under Control Excitations
In this paper, a new efficient method is proposed to obtain the transient response of linear or piecewise linear dynamic systems with time delay and periodic coefficients under arbitrary control excitations via Chebyshev polynomial expansion. Since the time domain can be divided into intervals with length equal to the delay period, at each such interval the fundamental solution matrix for the c...
متن کاملSOLUTION AND STABILITY OF A SET OF PTH ORDER LINEAR DIFFERENTIAL EaUA TIONS WITH PERIODIC COEFFICIENTS VIA CHEBYSHEV POLYNOMIAlS
Chebyshev polynomials are utilized to obtain solutions of a set of pth order linear differential equations with periodic coefficients. For this purpose, the operational matrix of differentiation associated with the shifted Chebyshev polynomials of the first kind is derived. Utilizing the properties of this matrix, the solution of a system of differential equations can be found by solving a set ...
متن کاملA fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations
In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کاملNumerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials
In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004